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Topological dynamics in a catalysis experiment
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A time series of the catalytical reaction of CO and O; on a Pt(110) surface is used to model
the topological features of the underlying attractor by reconstructing unstable periodic orbits in a
three-dimensional imbedding space. The orbits reveal that the template supporting the dynamics

cannot be that of a Smale’s horseshoe.
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I. INTRODUCTION

Topological descriptions of strange attractors in three-
dimensional (3D) flows are based on the organization of
unstable periodic orbits [1]. This information can be
summarized in the form of a template [2], which describes
the entanglement of the orbits in the flow. The descrip-
tion is “robust” both with respect to small changes in
control parameters and to coordinate transformations.

The interesting result for practical applications is that
the topological description can be used to analyze exper-
imental time series, which can be imbedded in 3D space.
Up to now, there appeared to be a contradiction between
the vast amount of theoretically possible templates and
those actually found in experimental data [1,3], which all
reduced to the two-branched horseshoe template.

In this Brief Report we discuss an experimental time
series recorded from a catalyzed chemical reaction, which
presents a different behavior; namely, an orbit organiza-
tion that is incompatible with that of a horseshoe tem-
plate. We also assess that the data is chaotic and discuss
the limitations of our approach.

II. ORIGIN OF DATA

Chaos has been observed in a number of catalytic sys-
tems under various conditions [4]. Here we examine the
catalytic CO oxidation on a Pt(110) single crystal surface
under isothermal, low-pressure conditions. This system
was found to exhibit a very rich variety of oscillatory be-
havior, including a period-doubling cascade [5,6]. From
the computation of metric properties it is found that near
the accumulation point the system exhibits simple chaos
(one positive Lyapunov exponent), while measurements
away from it resulted in hyperchaos (more than one pos-
itive Lyapunov exponent) [7,8]. Here we concentrate on
the first case. We analyzed a time series (file B from
Refs. [7,8]) that was recorded by monitoring the work
function of the surface with a Kelvin probe at a rate
of 0.15 s. It consists of 4850 four-digit integers corre-
sponding to about 12 min of measurement. Long-term
recordings were hampered by the difficulty to guarantee
constancy of the pressures [6]. The data exhibited an
information dimension D; = 2.35 + 0.03 (nearest neigh-
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Some of the computed orbits imply positive topological
entropy, showing that the time series is chaotic.

bor algorithm), a Kolmogorov entropy K; = 0.09 + 0.02
(computed from the marginal redundance [9]) and a Lya-
punov exponent of 0.07 4 0.01 (Sano-Sawada algorithm).
These metric properties, however do not give information
about the topological structure of an attractor. Rather,
attractors with very similar characteristic measures can
exhibit quite different qualitative features.

III. TOPOLOGICAL ANALYSIS

The main assumption underlying our analysis is that
the recorded data actually samples a finite portion of the
attractor associated to a yet unknown dynamical system
that can describe the data. The validity of this assump-
tion has to be gauged at all stages of the procedure.

If the attractor is not a fixed point, periodic orbit, or
quasiperiodic orbit, but rather it has an irregular, though
recurrent behavior, we are likely to expect that part of
it will consist of an infinite number of unstable periodic
orbits, such as it happens with, e.g., the chaotic Lorenz
attractor. We will first attempt to identify some of these
orbits and later imbed them in a larger space where the
minimal dynamical requirements are satisfied.

A. Close returns

We can estimate which periodic orbits are “sampled”
by our time series with the method of close returns [10].
If a portion z;, zi41, ..., Tx—1 of our data were exactly
a periodic orbit, then the values zy, Tg4+1, Tg+2, €etc.,
would equal z;, 1, 142, etc., respectively. Since we
are sampling unstable periodic orbits together with un-
avoidable sampling errors, the equality will never be ful-
filled in practice. At most, we can expect that

1 N-1

N Z I(L'H_j — :l:k+]'| < €. (1)

7=0

We will consider that a portion of a time series is a
candidate for a periodic orbit when the equation above
is satisfied for € small enough (usually of the order of a
few percent of the standard deviation of the data) and
N of the order of a few periods.

After filtering the initial data to achieve both high-
frequency and low-frequency noise reduction, we identi-
fied 40 periodic orbits, most of them of period 3 or 6.
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B. Imbedding

The main goal of an imbedding is to produce a multidi-
mensional time series that can be regarded as a model of
the flow of a dynamical system. In simpler words, it has
to be free from self-intersections, because a dynamical
flow cannot intersect itself, due to the unicity of the so-
lutions of the differential equations that describe it. We
estimated the self-intersection statistics by sampling the
number of times that the cosine of the angle between the
tangent directions of close-lying portions of the flow falls
below a threshold [11]. A value of 1 for the cosine means
that close-lying portions of the flow are parallel; reducing
the chances of having a self-intersection. This criterion
does not pick up a preferred imbedding; many 3D sets of
coordinates may work equally well.

We encountered that in the 3D imbedding described
below over 99% of the data gives a cosine value above
1/2. We have chosen the following set of coordinates
based also on the fact that they do not corrupt the signal
to noise ratio (as a derivative imbedding would) and that
they yield a smooth imbedding:

z1(k) = z(k), (2)
(k) = e Tzo(k — 1) + z(k), withz2(0)=0, (3)
z3(k) = Hlz|(k) = F~H[V2mi Fla]](k), (4)

where we choose 7 > 0 such that 0 < e™” < 1. The coor-
dinate z, is optimal for e™” = 0.99 and it corresponds to
a discretized integral of the dataset times a cutoff factor
[1], since we have that

k

z2(k) = Zw(j)e'T(k_j) ~ /0 ' z(s)e Tt ds.  (5)

i=1

Concerning 3, F represents (a discretized implementa-
tion of) the Fourier transform. This coordinate is hence
the (discretized version of the) Hilbert transform of the
original set, i.e., the convolution of z(¢) with g(¢t) = 1/¢:

T el) gy (6)

t—=z

M) = [

— o0

Figure 1 shows a 2D projection of our 3D imbedding.

The inspection of the imbedded flow indicates that it is
a good candidate for a dynamical model. Moreover, the
structure of the flow admits the definition of a Poincaré
section, and hence the analysis of the periodic orbits of
the flow, now equipped with the 3D imbedding can be
done in terms of the associated braids [1,12]. We also
tested the assumption that the derived Poincaré map is
2D. A false-neighbors test [11] indicates that over 99% of
the false neighbors (including data segments containing
chaotic periodic orbits; see below) can be resolved with
a 2D Poincaré map.

C. Template

The available data turned out to contain mainly
period-3 and period-6 orbits. By following the orbits
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FIG. 1. 2D projection of the reconstructed flow.

along the flow and taking their intersections with a set of
transverse sections, we can identify the associated braid
by inspection. In Fig. 2 we show two examples out of the
20 best identified orbits. Each braid crossing corresponds
to portions of the periodic orbit that pass one above the
other in the 3D flow. The crossings are described by gen-
erators or elementary crossings o; (o] '), where thread i
passes over (under) thread ¢ + 1. The topological infor-
mation present in a periodic orbit lies actually in its braid
type [13,12]. Since the braid type is an equivalence class
we rearranged the braid read from the flow to its simplest
equivalent expression (compare Fig. 2 and Fig. 3 below).

The identification of a template amounts to specifying
the number, ordering and folding of the branches that are
necessary to host the encountered braid types. Since we
only have knowledge of a finite number of periodic orbits
via the close-return candidates, we can at most deter-
mine which is the minimum amount of branches which
can host the observed orbits. An error in the determi-
nation of an orbit candidate may induce an error in the
determination of the template. The error of our candi-
dates is of the order of ¢, i.e., the mismatch of the close
returns. If two portions of the periodic orbit pass closer
than € to each other when they build an elementary cross-
ing, we can actually not decide whether this crossing is
o; or its inverse. To avoid this problem, we considered
only the ca. 20 orbits, where the portions of the peri-
odic orbit approached each other a distance larger than
€. The simplest template that can hold all of the identi-
fied orbits, and in particular those displayed in Fig. 2, is
a three-branched template (see Fig. 3, where we include
another, more entangled, period-6 orbit).

The candidate template need not be correct. Apart
from holding the orbits, the template should render their
linking properties. However a number of portions of the
period-3 candidates passed closer than € to the period-6.
Hence, the linking numbers are determined with larger
uncertainty than the braid types themselves. If we ad-
mit the computed linking numbers disregarding this un-
certainty, we would need to add a fourth branch to our
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FIG. 2. Period-3 (a) and a period-6 (b) orbits as sam-
pled from the imbedded flow. The abscissa denotes the
angle ¢ at which the Poincaré section intersects the x-y
plane, and the ordinate is the resulting new coordinate
z = sin(¢)z1 + cos(@p)xs.
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FIG. 3. Model template and the braid type of the period-3

and two period-6 orbits.

model template (or even a fifth branch depending on the
degree of inaccuracy we are prepared to tolerate). In
any case, our point is that the simplest template that is
compatible with the data and the accuracy of the best
periodic orbit candidates is that of Fig. 3. This template
is complicated enough to assess our claim, i.e., that the
data does not admit a horseshoe template. If the tem-
plate were even more complicated, the result would still
hold.

In a horseshoe template the folded branch, when re-
garded in such a way that the fold is counterclockwise
as in Fig. 3, lands in front of the other branch. Hence,
horseshoe orbits have a braid type that can be repre-
sented using only the braid generators o; and no inverse
generator o; ! [13]. No mixing of positive and negative
exponents is present in the horseshoe braids. In contrast,
our imbedded orbits have braid types with both the gen-
erators and their inverses, as seen in the examples. Since
the folded branch of our model template falls behind the
other branches, our model template is intrinsically in-
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FIG. 4. View of two different choices of the Poincaré sec-
tion for the adopted imbedding. The earlier referenced per-
odic orbits are marked with a cross (resp. a diamond). Co-
ordinates are zz vs z (see Fig. 2), (a) ¢ = —80, (b) ¢ = 39.
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compatible with a horseshoe template. This is the main
result of this work.

D. Chaos and topological entropy

A 2D diffeomorphism having positive topological en-
tropy is called chaotic [14]. It actually suffices to identify
a periodic orbit of the diffeomorphism that implies posi-
tive entropy. In particular, the “badly ordered” period-3
orbit shown above implies positive entropy [15].

How can this strong theoretical result be confirmed in
practice out of experimental data? Actually, it is not the
periodic orbit itself, but rather the assumption that the
orbit pertains to a 2D diffeomorphism that allows us to
draw conclusions about entropy implication. If the dif-
feomorphism has a given orbit, by continuity it has to
fold and stretch its domain in such a way that we can
estimate bounds for the topological entropy. It is there-
fore crucial that the candidate orbits we obtain effectively
sample the Poincaré map associated with the proposed
imbedding [11]. This important fact has been overlooked
until recently.

Since we have a finite data set, we can at most obtain
a finite sampling of the Poincaré surface. To the extent
that this sampling covers the surface, we can be confi-
dent that the identified orbits are characteristic of the
Poincaré map and hence relevant to determine entropy
and chaoticity. In such a case, the information we obtain
can be reasonably ascribed to the experimental data.

If, on the other hand, our sampling consisted of a set of
disjoint regions on the Poincaré surface, different imbed-
dings could yield different linkings among the regions.
Information obtained from this linking is artificial; it de-
pends on the imbedding and it cannot be ascribed to
the data. It is therefore not relevant for the assessing
of characteristic orbits [11]. In Fig. 4 we show how our
data samples the Poincaré surface. It can be seen that
the sampling is reasonably good, since together with the
selected orbits, other points in the surrounding of the or-
bits are mapped along by the stretching and folding so
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that we can safely accept our example orbits to be rep-
resentative of the behavior of the Poincaré map. We can
therefore declare the data set to be chaotic. Note that
this conclusion can be reached without invoking any met-
ric properties.

IV. CONCLUDING REMARKS

Our two main results are that the dataset is chaotic
because of the existence of a badly ordered period-3 or-
bit, and that it responds to a minimal template that is
incompatible with the horseshoe template.

Having a nonhorseshoe template has definite conse-
quences in the type of periodic orbits one encounters in
the data, since horseshoe templates only have periodic
orbits that can be represented by positive braids, i.e.,
braids consisting only of positive crossings o;.

The reliability of the results was established in several
stages. Orbit candidates were only taken into account
if the recurrent parts of the dataset stayed close over a
time of the order of 5 periods or more. The suitability
of the imbedding was checked self-intersection and false-
neighbors statistics. The braid types were determined
using orbit candidates having small error as compared
with the crossing distance. The sampling of the Poincaré
section by the imbedded points was found to be satisfac-
tory. These measures are, however, qualitative: rather
than a sharp answer they give an estimate of how mean-
ingful a result may be.
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FIG. 3. Model template and the braid type of the period-3
and two period-6 orbits.



